Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520569

RESUMO

The continued evolution of the SARS-CoV-2 Omicron variant has led to the emergence of numerous sublineages with different patterns of evasion from neutralizing antibodies. We investigated neutralizing activity in immune sera from individuals vaccinated with SARS-CoV-2 wild-type spike (S) glycoprotein-based COVID-19 mRNA vaccines after subsequent breakthrough infection with Omicron BA.1, BA.2, or BA.4/BA.5 to study antibody responses against sublineages of high relevance. We report that exposure of vaccinated individuals to infections with Omicron sublineages, and especially with BA.4/BA.5, results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization, but does not efficiently boost neutralization of sublineages BA.2.75.2 and XBB. Accordingly, we found in in silico analyses that with occurrence of the Omicron lineage a large portion of neutralizing B-cell epitopes were lost, and that in Omicron BA.2.75.2 and XBB less than 12% of the wild-type strain epitopes are conserved. In contrast, HLA class I and class II presented T-cell epitopes in the S glycoprotein were highly conserved across the entire evolution of SARS-CoV-2 including Alpha, Beta, and Delta and Omicron sublineages, suggesting that CD8+ and CD4+ T-cell recognition of Omicron BQ.1.1, BA.2.75.2, and XBB may be largely intact. Our study suggests that while some Omicron sublineages effectively evade B-cell immunity by altering neutralizing antibody epitopes, S protein-specific T-cell immunity, due to the very nature of the polymorphic cell-mediated immune, response is likely to remain unimpacted and may continue to contribute to prevention or limitation of severe COVID-19 manifestation.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-508818

RESUMO

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. We and others have recently reported that breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 are associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). BA.2 breakthrough infection mediated overall stronger cross-neutralization of BA.2 and its descendants (BA.2.12.1, BA.4, and BA.5) compared to BA.1 breakthrough infection. Here we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the magnitude and breadth of the neutralizing antibody response upon breakthrough infection in vaccinated individuals and in mice upon booster vaccination. We show that immune sera from triple mRNA-vaccinated individuals with subsequent Omicron BA.4/BA.5 breakthrough infection display broad and robust neutralizing activity against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with similarly broad neutralizing activity. Immunization of naive mice with a bivalent mRNA vaccine (wild-type + Omicron BA.4/BA.5) induces strong and broad neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines may enhance neutralization breadth, and in a bivalent format may also have the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-502461

RESUMO

Recently, we reported that BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs), yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. As the latter sublineages are derived from Omicron BA.2, we characterized serum neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs as well as all tested Omicron sublineages, including BA.2 derived variants BA.2.12.1, BA.4/BA.5. Furthermore, applying antibody depletion we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a significant extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein, whereas their neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers significant NTD specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2 derived sublineages like BA.4/BA.5 and rapidly ongoing evolution, these findings are of high relevance for the development of Omicron adapted vaccines.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486695

RESUMO

Omicron is the evolutionarily most distinct SARS-CoV-2 variant (VOC) to date and displays multiple amino acid alterations located in neutralizing antibody sites of the spike (S) protein. We report here that Omicron breakthrough infection in BNT162b2 vaccinated individuals results in strong neutralizing activity not only against Omicron, but also broadly against previous SARS-CoV-2 VOCs and against SARS-CoV-1. We found that Omicron breakthrough infection mediates a robust B cell recall response, and primarily expands preformed memory B cells that recognize epitopes shared broadly by different variants, rather than inducing new B cells against strictly Omicron-specific epitopes. Our data suggest that, despite imprinting of the immune response by previous vaccination, the preformed B cell memory pool has sufficient plasticity for being refocused and quantitatively remodeled by exposure to heterologous S protein, thus allowing effective neutralization of variants that evade a previously established neutralizing antibody response. One Sentence SummaryBreakthrough infection in individuals double- and triple-vaccinated with BNT162b2 drives cross-variant neutralization and memory B cell formation.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268103

RESUMO

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage, B.1.1.529, was recently detected in Botswana and South Africa and is now circulating globally. Just two days after it was first reported to the World Health Organization (WHO), this strain was classified as a variant of concern (VOC) and named Omicron. Omicron has an unusually large number of mutations, including up to 39 amino acid modifications in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies from convalescent and vaccinated individuals may be severely compromised. In this study, we tested pseudoviruses carrying the SARS-CoV-2 spike glycoproteins of either the Wuhan reference strain, the Beta, the Delta or the Omicron variants of concern with sera of 51 participants that received two doses or a third dose ([≥]6 months after dose 2) of the mRNA-based COVID-19 vaccine BNT162b2. Immune sera from individuals who received two doses of BNT162b2 had more than 22-fold reduced neutralizing titers against the Omicron as compared to the Wuhan pseudovirus. One month after a third dose of BNT162b2, the neutralization titer against Omicron was increased 23-fold compared to two doses and antibody titers were similar to those observed against the Wuhan pseudovirus after two doses of BNT162b2. These data suggest that a third dose of BNT162b2 may protect against Omicron-mediated COVID-19, but further analyses of longer-term antibody persistence and real-world effectiveness data are needed.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474095

RESUMO

The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants on a daily basis. While most variants do not impact the course of the pandemic, some variants pose a significantly increased risk when the acquired mutations allow better evasion of antibody neutralisation in previously infected or vaccinated subjects or increased transmissibility. Early detection of such high risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delays in appropriate responses by decision makers. Here we present a novel in silico approach combining spike (S) protein structure modelling and large protein transformer language models on S protein sequences to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. These metrics can be combined into an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk-monitoring variant lineages in near real-time. The system accurately pinpoints the putatively dangerous variants by selecting on average less than 0.3% of the novel variants each week. With only the S protein nucleotide sequence as input, the EWS detects HRVs earlier and with better precision than baseline metrics such as the growth metric (which requires real-world observations) or random sampling. Notably, Omicron BA.1 was flagged by the EWS on the day its sequence was made available. Additionally, our immune escape and fitness metrics were experimentally validated using in vitro pseudovirus-based virus neutralisation test (pVNT) assays and binding assays. The EWS flagged as potentially dangerous all 16 variants (Alpha-Omicron BA.1/2/4/5) designated by the World Health Organisation (WHO) with an average lead time of more than one and a half months ahead of them being designated as such. One-Sentence SummaryA COVID-19 Early Warning System combining structural modelling with machine learning to detect and monitor high risk SARS-CoV-2 variants, identifying all 16 WHO designated variants on average more than one and a half months in advance by selecting on average less than 0.3% of the weekly novel variants.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-421008

RESUMO

A safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD down, one-RBD up state. In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFN{gamma}+ CD8+ T-cell responses. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. Both candidates are being evaluated in phase 1 trials in Germany and the United States. BNT162b2 is being evaluated in an ongoing global, pivotal Phase 2/3 trial (NCT04380701, NCT04368728).

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-280818

RESUMO

To contain the coronavirus disease 2019 (COVID-19) pandemic, a safe and effective vaccine against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is urgently needed in quantities sufficient to immunise large populations. In this study, we report the design, preclinical development, immunogenicity and anti-viral protective effect in rhesus macaques of the BNT162b2 vaccine candidate. BNT162b2 contains an LNP-formulated nucleoside-modified mRNA that encodes the spike glycoprotein captured in its prefusion conformation. After expression of the BNT162b2 coding sequence in cells, approximately 20% of the spike molecules are in the one-RBD up, two-RBD down state. Immunisation of mice with a single dose of BNT162b2 induced dose level-dependent increases in pseudovirus neutralisation titers. Prime-boost vaccination of rhesus macaques elicited authentic SARS-CoV-2 neutralising geometric mean titers 10.2 to 18.0 times that of a SARS-CoV-2 convalescent human serum panel. BNT162b2 generated strong TH1 type CD4+ and IFN{gamma}+ CD8+ T-cell responses in mice and rhesus macaques. The BNT162b2 vaccine candidate fully protected the lungs of immunised rhesus macaques from infectious SARS-CoV-2 challenge. BNT162b2 is currently being evaluated in a global, pivotal Phase 2/3 trial (NCT04368728).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...